ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Computer Science	NQF level	6			
Course Title	Algorithm Design and Analysis	Code	501292 Prerequisite 5012		501291	
Credit Hours	3	Theory	3 Practical 0		0	
Course Leader	Dr. Arwa Zabian	email	arwa@jadara.edu.jo			
Lecturers	Dr. Arwa Zabian	emails	azabian@hotmail.com			
Lecture time	11.30-1.00 sun-tue	Classroom	Face to face learning			
Semester	Second	Production	2020	Updated	2021-2022	
Awards	Bachelor Degree	Attendance	Fulltime			

Short Description

This course introduces the basic concepts and methods used in the design and analyze of the algorithms. Algorithm design is a specific method to create a mathematical process in solving problem. At the end of this course, the student must be able to design an algorithm (or more than one) to solve any proposed problem using flow chart and pseudo code. Then, he must be able to analyze it and to find the most efficient solution.

Algorithm analysis means determining the amount of resources necessary to execute it. Resources mean time and space. This course allows the student to calculate the amount of time and space needed to execute each instruction of an algorithm, compare the cost of different types of instructions, and calculate the total time of execution. Given that, he must be able to distinguish between efficient and non-efficient algorithm. Based on this comparison the student will learn about the complexity (easy, hard), and the computability of the problem (solvable or not).

Course Objectives

Upon completion of this course, students should be able to:

Understand what means an algorithm

Design and analyze an algorithm

Find and algorithmic solution to some problems

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1: $\underline{\text{Define the}}$ algorithm, and classify data structure (hash table , binary search tree) based on their functions (K1)

B. Knowledge - Practical Application

a2: Select the best sorting/ searching used algorithm for any problem (K5)

C. Skills - Generic Problem Solving and Analytical Skills

b1: Make use of logical reasoning for a problem solution (algorithm design) (S1)

b2: Apply algorithms analysis tools (S2)

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

Face to face learning

Assessment Methods

By quizzes, home works and exams

Course Contents						
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessment Methods	
1, 2	6	a1, a2, b1	Algorithm Design	Face to face learning	quiz	
3,4	6	b2	Algorithm Comparison	Face to face learning	quiz	
5,6	6	b2	Analyzing algorithms	Face to face learning	assignment	
7	3	a1,a2, b2	Algorithm efficiencyOrder of GrowthBinary search algorithm	Face to face learning	quiz	
	1.5	a2	Sorting algorithms Quicksort	Face to face		
8	1.5	a1,a2, b1,b2	Mid Exam	learning	Mid Term	
9, 10	6	a1,a2	Heap sort	Face to face learning	quiz	
11 12	6	a1	Hash table	Face to face learning	quiz	
13	3	a1	Binary search tree	Face to face learning		

14 15	6	a1, b1	Graph search algorithms (BFS, DFS), Dijkstra	Face to face learning	
16	2	a1, a2, a3, b1	Final exam	Face to face exam	Final exam

Infrastructure					
Textbook	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. The MIT Press/ Cambridge, Massachusetts London-England. 2022, 4 th edition				
References	ISBN-10: 0262033844				
Required reading	The Algorithm Design Manual (Texts in Computer Science) 3rd ed. 2020 Edition, Steven S. Skiena. ISBN-13: 978-3030542559				
Electronic materials	Textbook Available on : http://elearning.jadara.edu.jo/CourseContent/index/9552/				
Other					

Assessment Method		Grade					
			a1	a2	b1	b 2	
First (Midterm)		30	5	10	5	10	
Second (if applicable)							
Final Exam		50	20	10	10	10	
Coursework		20					
nt	Assignments						
sme	Case study						
ssess	Discussion and interaction						
Coursework assessment methods	Group work activities						
	Lab tests and assignments						
	Presentations						
	Quizzes	20	5	5	5	5	
Total		100	30	25	20	25	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.