Jadara University

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology				
Department	Computer Science			NQF level	6
Course Title	Computation Theory	Code	501334	334 Prerequisite	
Credit Hours	3	Theory	3 Practical		
Course Leader	Dr. Arwa Zabian	email	arwa@jadara.edu.jo		
Lecturers	Dr. Arwa Zabian	emails	azabian@hotmail.com		
Lecture time	10.00-11.30 wed/ on- line	Classroom	Attendance		
Semester	First 2021-2022	Production	2021	Updated	2021

Short Description

Theory of computation is a course dedicates to teach the student the meaning of computing. What we can do with a computer, and how it can do and why some problems are computable and some other problems are not.

Course Objectives

1. To learn how the computer performs all the problems assigned to it

2. to study three related area are: automata, computability and complexity.

In complexity theory we classify the problems to be solved in easy and hard. In this field it is important to distinguish why a problem is classified easy and why another one is classified hard. In computability theory we classify the problem in solvable and unsolvable.

In automata theory we define a mathematical model of computation.

For a best comprehensive of these three theories, it is important to make a precise definition of a computer. So, the computer is an abstract machine (model) has the role to solve some

problems. In this course the student must arrive to a good comprehensive of this reality

Course Intended Learning Outcomes (CILOs)

A. Knowledge - Theoretical Understanding

a1. Demonstrate a full understanding and mentality of Automata Theory as the basis of all computer science languages design (K1)

a2. Compare between different mathematical models studied : DFA, NFA, Regular expression, PDA, Turing machine, context free grammar(K4)

B. Knowledge - Practical Application

a3. Applying automata theory in designing a DFA,NFA, PDA for any regular language (K5)

C. Skills - Generic Problem Solving and Analytical Skills

b1. Utilize context free grammar in designing compiler/ language rules (S1)

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

Teaching and Learning Methods

- 1- Face-to-face lectures
- 2- Distance Learning
- 3- Student assignments to study real field and provide reports

Assessment Methods

- 1- Quizzes
- 2- Assignments
- **3-** Mid and final exams

Course Contents						
Week	Hours	CILOs	Topics	Teaching & Learning Methods	Assessment Methods	
1.	1.5	al	Introduction to automata, complexity theory and computation theory. Detailed and fast review of some of the mathematical notions and terminology like strings and language and proofing method.	Face to face	quiz	
	1.5			Distance learning		
2.	1.5	a2	Regular language that includes finite automata,	Face to face		
	1.5			Distance learning		
3.	1.5	a2	non deterministic, regular	Face to face		
	1.5	a∠	expression	Distance learning		
4.	1.5	a1,a2	Continue non deterministic, regular expression	Face to face		
	1.5	u1,u2	regular expression	Distance learning		
5.	1.5	a2	Non regular language	Face to face		
	1.5	. u2		Distance learning		
	1.5	al	Pumping lemma	Face to face	quiz	
6.	1.5	ui		Distance learning	_ quiz	
7.	1.5	a2, a3	Regular expressions , content free grammar	Face to face	quiz	
	1.5	a2, a3		Distance learning	_ quiz	
8.	2	a1,a2,a3	Mid exam	Face to face		

	1.5	a2	GNFA	Face to face	
9.	1.5	. a2		Distance learning	
10	1.5	a3, b1	content free grammar	Face to face	
10.	1.5			Distance learning	
11	1.5	b1	pushdown automata	Face to face	
11. 1.5				Distance learning	
10	1.5	b1	Equivalence between context free grammar and PDA	Face to face	
12.				Distance learning	
13.	3	b1	Turing machine	Face to face	Home work
14.	3	b1	Turing machine	Face to face	
15.	6	a1,a2,a3,	Final exam	Face to face	
16.		b1			

Infrastructure				
Textbook	Introduction to the theory of computation, Michael Sipser, Course			
Textbook	Technology –GENGAGE Learning, 2006, 2d			
References	ISBN-10:0-619-21764-2			
Required reading				
Electronic materials				
Other				

Course Assessment Plan						
Assessment Method		Grade	CILOs			
			a1	a2	a3	b1
First (N	fidterm)		17	3	10	
Second	(if applicable)					
Final E	xam		10 10 15 15			15
Course	Coursework					
s	Assignments					
Coursework assessment methods	Case study					
Coursework ssment meth	Discussion and interaction			2		
rsev ent i	Group work activities					
Jou Sme	Lab tests and assignments		13			5
) Sses	Presentations					
8	Quizzes					
Total			40	15	25	20

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.