Jadara University

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	College of Engineering					
Department	Department of Renewable Engineering			NQF level	7	
Course Title	Automatic control methods	Code	703431 Prerequisite			
Credit Hours	3	Theory	Practical			
Course Leader	Dr. Amer Al- Canaan	email	a.alcanaan@jadara.edu.jo			
Lecturers	Dr. Amer Al- Canaan	emails	a.alcanaan@jadara.edu.jo			
Lecture time	11:30- 13:00	Classroom		Attendance	Fulltime	
Semester	Summer 2023/2024	Production	2019 Updated 2023		2023	
Type of Teaching	□ Face to Face	■ Blended	□ Online			

Short Description

This course is designed to provide the concepts, procedures, and data and decision analysis techniques necessary to automatic control methods. The topics in this course include analysis of open-loop and closed-loop linear feedback control systems in the s and time domains, transfer functions, Laplace transform, initial and final value theorems, block diagram reduction rules, impulse response, step response, frequency response, state space methods and applications to electromechanical and mechatronics systems.

Course Objectives

This course is designed to guide students through the continuation of their transition from being students of engineering to being practitioners of engineering.

- 1. Understand basics if Laplace Transform.
- 2. Distinguish between open-loop and closed-loop systems.
- 3. Apply block diagram reduction rules to feedback control systems.
- 4. Apply the initial and final-value theorems in control systems.
- 5. Master the application of basic control theories.
- 6. Gain experience in using and implementing relevant software codes and packages
- 7. Gain an appreciation for and become proficient in applying the final steps of the engineering design process to the significant.
- 8. Become proficient in proper professional written documentation, become proficient in the oral communication of technical concepts.

Course Intended Learning Outcomes (CILOs)

A. Knowledge - Theoretical Understanding

a1. Understand the basic elements of open-loop and closed-loop control systems, describe the functions and design requirements of keys & couplings. (K1)

a2. Apply the fundamentals of transfer functions and block diagram reduction rules to control systems. (K2)

B. Knowledge - Practical Application

a3.

C. Skills - Generic Problem Solving and Analytical Skills

b1. Analyse the different parameters of control methods including damping ratio, gain by utilising the Laplace transform, final/initial value theorems and partial fractions. (S1)

D. Skills - Communication, ICT, and Numeracy

b2.

b3. Work effectively in a team to design/analyse different control methods with specific parameters/requirements. (C1)

E. Competence: Autonomy, Responsibility, and Context

c1.

Teaching and Learning Methods							
■ Face to Face Lectures □	Brain Storming	■ Synchronous remote	 Asynchronous remote 				
■ Using Video □	Discussions	Research Project	□ Case Study				
□ Field visit	Problem solving	g					
Assessment Methods							
□ Formative Assessment	Quiz	🗖 Lab Exam	Homework				
Project Assessment	□ Oral Preser	ntation Midterm	Final Exam				

Course Contents					
Week	Hours	CILOs	Topics	Teaching & Learning Methods	Assessment Methods
1.	3	a.1 a.2	Introduction to Control Systems A History of Control Systems	lectures, Discussions	
2.	3	a.1 c.1	Contemporary Applications Open-Loop Systems Closed-Loop (Feedback Control) Systems	lectures, Discussions	
3.	3	c.1	Computer-Controlled Systems The Design Process	Lectures, Discussions.	
4.	3	b.1	Modeling in the frequency domain. Mathematical representation	lectures, Discussions	Quiz #1
5.	3	a.1 b.1	Laplace transform, Direct Laplace transform	lectures, Discussions	
6.	3	a.1 b.1	inverse Laplace transform Laplace transform table	lectures, Discussions	Quiz #2
7.	3	a.1 b.1	Transfer Function Partial-Fraction Expansion	lectures, Discussions	

8.	3	b.1 a.1	Block diagram of a transfer function Simple Circuits via Mesh Analysis	lectures, Discussions	Midterm Exam
9.	3	a.1 c.1	Simple Circuits via Voltage Division Electric Circuit Analogs	lectures, Discussions	
10.	3	a.1 b.1	Components of A control system Block Diagrams Branch Point Summing point	lectures, Discussions	
11.	3	al bl	Block Diagram of a Closed-Loop System	lectures, Discussions	Quiz #3
12.	3	a.1 b.1	Open-Loop Transfer Function and Feedforward Transfer Function Open-Loop Transfer Function Feedforward transfer function	lectures, Discussions	
13.	3	a.1 b.1	Closed-Loop System Subjected to a Disturbance block diagram of the RC circuit	lectures, Discussions	Quiz #4
14.	3	b.1 c1	Block Diagram Reduction Moving Blocks to Create Familiar Forms	lectures, Discussions	
15.	3	b1, c1	Reduction of Multiple-loop feedback control system. SIGNAL-FLOW GRAPH MODELS Non-touching loops	lectures, Discussions	
16.	3	a1, a2, b1,	Final Exam		Final Exam

Infrastructure				
Textbook	CONTROL SYSTEMS ENGINEERING, Norman S. Nise, sixth Edition, John Wiley & Sons, Inc. 2020			
References MODERN CONTROL ENGINEERING, Katsuhiko Ogata. 5 th edition				
Required reading				
Electronic materials				
Other				

Course Assessment Plan						
Assessment Method		Grade	CILOs			
			a1	a2	b1	b3
First	(Midterm)	30%	15	9	6	
Secon	d (if applicable)		16	10	14	
Final Exam		40%				
Coursework		30%				
nt	Assignments					
sme	Case study					
isses ds	Discussion and interaction					
Coursework a metho	Group work activities	15				15
	Lab tests and assignments					
	Presentations					
	Quizzes	15	7	2	6	
Total		100%	38	21	26	15

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code). Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.