

ref# FR/P1/P1/1/v1

COURSE DESCRIPTIONS

Faculty	Science and Information Technology					
Department	Computer Science			NQF level	6	
Course Title	Simulation and modeling	Code	501351 Prerequisite		852121	
Credit Hours	3	Theory	3 Practical 0			
Course Leader	Dr. Arwa Zabian	email	arwa@jadara.edu.jo			
Lecturers	Dr. Arwa Zabian	emails				
Lecture time	10-11.30 Mon, Wed	Classroom	Distance learning			
Semester	First/ 2020-2021	Production	Updated 2020		2020	
Awards	Bachelor Degree	Attendance	Fulltime			

Short Description

This coures is an introduction to modelling and simulation concepts, system analysis and classification, continous and discrete models, pseudorandom number generation and testing, queuing system, simulation tools, how to build simulator using Matlab.

Course Objectives

- Define system components and attributes
- Identify the best model used in each situation
- Designing a model for any system
- Identify the type of input needed for any system
- Building or using simulator to simulate the system model
- Analysing feedback to modify the system in a manner to satisfy the problem requirements

Learning Outcomes

A. Knowledge - Theoretical Understanding

a1: **<u>Define</u>** the components of the system, entities and what are the relationships between them (K1) a2: <u>Compare</u> between different models and <u>find</u> the best model to use (K2)

B. Knowledge - Practical Application

a3: Apply theoretical concepts for modeling any system (K4)

C. Skills - Generic Problem Solving and Analytical Skills

b1: <u>Analyze</u> model and <u>determine</u> input for the corresponding system (S1)

D. Skills - Communication, ICT, and Numeracy

E. Competence: Autonomy, Responsibility, and Context

c1: <u>Develop</u> simulation model, <u>formulate</u> and <u>estimate</u> the results for <u>improving</u> or <u>modifying</u> the studied system (C1)

Teaching and Learning Methods

- 1. Using illustrative and code examples in the lectures.
- 2. Imitate real-world practices during lectures and labs and practice role playing.
- 3. Offering case studies according to the nature of the offered course, and offer them opportunities for presenting solutions that deem appropriate to solve a specific problem

Assessment Methods

By quizzes, assignments, practical exams, theoretical exams

Course Contents							
Week	Hours	CLOs	Topics	Teaching & Learning Methods	Assessmen t Methods		
1.	3	a1	What is modelling	Distance learning	quiz		
2.	3	a1	What is simulation ? why we use simulation , advantage and disadvantage of simulation	Distance learning			
3.	3	a1	Type of models (continous, Discrete, stochahostic)	Distance learning	quiz		
4.	3	a1	Type of models (continous, Discrete, stochahostic) continue	Distance learning			
5.	3	b1	How to build a model	Distance learning			
6.	3	c1	How to build a model (continue)	Distance learning	quiz		
7.	3	a2, a3	how to generate an input (random number generation)	Distance learning			
8.	1.5	a1, a2,a3, b1,c1	Mid exam	Distance learning	Midterm		
	1.5	c1	How to build a simulator using Matlab (continue)				
9.	3	c1	How to build a simulator using Matlab or python	Distance learning			
10.	3	c1	How to build a simulator using Matlab or python (continue)	Distance learning	Assignmen t		
11.	3	c1	Staistical results analysis	Distance learning			
12.	3	c1	Staistical results analysis (continue)	Distance learning			
13.	3	c1	Complete case study	Distance learning	Case study or project		
14.	3	a1, a2,a3, b1,c1	Final exam	On line exam	Final exam		

Infrastructure				
Textbook	Introduction to Modeling and Simulation with Matlab and Python. Steven I.Gordon and Brian Guilfoos. 2017. Taylor & Francis Group			
References	ISBN: -13: 978-1-4978-7387-4			
Additional reading	 Computer Simulation Techniques: The definitive introduction! Harry Perros. 2009. The book is available at <u>http://www.csc.ncsu.edu/faculty/perros//simulation.pdf</u> Simulation with Arena. W.David Kelton, Randall P. Sdowski, Nancy B. Swetts. McGraw. Hill. Fifth Edition 2010. ISBN : 978-007- 126771-7 			
Electronic materials	mic materials http://elearning.jadara.edu.jo/CourseContent/index/9831/			
Other				

Course Assessment Plan								
Assessment Method		Grade	CLOs					
			a1	a2	a3	b1	c1	
Midterm		30	6	6	6	6	6	
Second (if applicable)								
Final Exam		50	10	10	10	10	10	
Coursework		20						
Coursework assessment methods	Assignments							
	Case study				6			
	Discussion and interaction							
	Group work activities					3	3	
	Lab tests and assignments							
	Presentations							
	Quizzes		4	4				
Total		100	20	20	22	19	19	

Plagiarism

Plagiarism is claiming that someone else's work is your own. The department has a strict policy regarding plagiarism and, if plagiarism is indeed discovered, this policy will be applied. Note that punishments apply also to anyone assisting another to commit plagiarism (for example by knowingly allowing someone to copy your code).

Plagiarism is different from group work in which a number of individuals share ideas on how to carry out the coursework. You are strongly encouraged to work in small groups, and you will certainly not be penalized for doing so. This means that you may work together on the program. What is important is that you have a full understanding of all aspects of the completed program. In order to allow proper assessment that this is indeed the case, you must adhere strictly to the course work requirements as outlined above and detailed in the coursework problem description. These requirements are in place to encourage individual understanding, facilitate individual assessment, and deter plagiarism.